Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 783
Filtrar
1.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627063

RESUMO

Trace eyeblink conditioning (TEBC) has been widely used to study associative learning in both animals and humans. In this paradigm, conditioned responses (CRs) to conditioned stimuli (CS) serve as a measure for retrieving learned associations between the CS and the unconditioned stimuli (US) within a trial. Memory consolidation, that is, learning over time, can be quantified as an increase in the proportion of CRs across training sessions. However, how hippocampal oscillations differentiate between successful memory retrieval within a session and consolidation across TEBC training sessions remains unknown. To address this question, we recorded local field potentials (LFPs) from the rat dorsal hippocampus during TEBC and investigated hippocampal oscillation dynamics associated with these two functions. We show that transient broadband responses to the CS were correlated with memory consolidation, as indexed by an increase in CRs across TEBC sessions. In contrast, induced alpha (8-10 Hz) and beta (16-20 Hz) band responses were correlated with the successful retrieval of the CS-US association within a session, as indexed by the difference in trials with and without CR.


Assuntos
Condicionamento Palpebral , Hipocampo , Consolidação da Memória , Rememoração Mental , Ratos Long-Evans , Hipocampo/fisiologia , Masculino , Condicionamento Palpebral/fisiologia , Animais , Consolidação da Memória/fisiologia , Rememoração Mental/fisiologia , Aprendizagem por Associação/fisiologia , Ratos , Condicionamento Clássico/fisiologia , Piscadela/fisiologia
2.
J Neurophysiol ; 131(5): 797-806, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38533969

RESUMO

Learning outcome is modified by the degree to which the subject responds and pays attention to specific stimuli. Our recent research suggests that presenting stimuli in contingency with a specific phase of the cardiorespiratory rhythm might expedite learning. Specifically, expiration-diastole (EXP-DIA) is beneficial for learning trace eyeblink conditioning (TEBC) compared with inspiration-systole (INS-SYS) in healthy young adults. The aim of this study was to investigate whether the same holds true in healthy elderly adults (n = 50, aged >70 yr). Participants were instructed to watch a silent nature film while TEBC trials were presented at either INS-SYS or EXP-DIA (separate groups). Learned responses were determined as eyeblinks occurring after the tone conditioned stimulus (CS), immediately preceding the air puff unconditioned stimulus (US). Participants were classified as learners if they made at least five conditioned responses (CRs). Brain responses to the stimuli were measured by electroencephalogram (EEG). Memory for the film and awareness of the CS-US contingency were evaluated with a questionnaire. As a result, participants showed robust brain responses to the CS, acquired CRs, and reported awareness of the CS-US relationship to a variable degree. There was no difference between the INS-SYS and EXP-DIA groups in any of the above. However, when only participants who learned were considered, those trained at EXP-DIA (n = 11) made more CRs than those trained at INS-SYS (n = 13). Thus, learned performance could be facilitated in those elderly who learned. However, training at a specific phase of cardiorespiratory rhythm did not increase the proportion of participants who learned.NEW & NOTEWORTHY We trained healthy elderly individuals in trace eyeblink conditioning, either at inspiration-systole or at expiration-diastole. Those who learned exhibited more conditioned responses when trained at expiration-diastole rather than inspiration-systole. However, there was no difference between the experimental groups in the proportion of individuals who learned or did not learn.


Assuntos
Condicionamento Palpebral , Humanos , Masculino , Idoso , Feminino , Condicionamento Palpebral/fisiologia , Eletroencefalografia , Idoso de 80 Anos ou mais , Frequência Cardíaca/fisiologia , Piscadela/fisiologia , Condicionamento Clássico/fisiologia
3.
Eur J Neurosci ; 59(3): 358-369, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092417

RESUMO

Limited options exist to evaluate the development of hippocampal function in young children. Research has established that trace eyeblink conditioning (EBC) relies on a functional hippocampus. Hence, we set out to investigate whether trace EBC is linked to hippocampal structure, potentially serving as a valuable indicator of hippocampal development. Our study explored potential associations between individual differences in hippocampal volume and neurite density with trace EBC performance in young children. We used onset latency of conditioned responses (CR) and percentage of conditioned responses (% CR) as measures of hippocampal-dependent associative learning. Using a sample of typically developing children aged 4 to 6 years (N = 30; 14 girls; M = 5.70 years), participants underwent T1- and diffusion-weighted MRI scans and completed a 15-min trace eyeblink conditioning task conducted outside the MRI. % CR and CR onset latency were calculated based on all trials involving tone-puff presentations and tone-alone trials. Findings revealed a connection between greater left hippocampal neurite density and delayed CR onset latency. Children with higher neurite density in the left hippocampus tended to blink closer to the onset of the unconditioned stimulus, indicating that structural variations in the hippocampus were associated with more precise timing of conditioned responses. No other relationships were observed between hippocampal volume, cerebellum volume or neurite density, hippocampal white matter connectivity and any EBC measures. Preliminary results suggest that trace EBC may serve as a straightforward yet innovative approach for studying hippocampal development in young children and populations with atypical development.


Assuntos
Condicionamento Palpebral , Criança , Feminino , Humanos , Pré-Escolar , Condicionamento Palpebral/fisiologia , Neuritos , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Condicionamento Clássico/fisiologia , Cerebelo/diagnóstico por imagem , Piscadela
4.
Nat Commun ; 14(1): 7459, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985778

RESUMO

Associative learning during delay eyeblink conditioning (EBC) depends on an intact cerebellum. However, the relative contribution of changes in the cerebellar nuclei to learning remains a subject of ongoing debate. In particular, little is known about the changes in synaptic inputs to cerebellar nuclei neurons that take place during EBC and how they shape the membrane potential of these neurons. Here, we probed the ability of these inputs to support associative learning in mice, and investigated structural and cell-physiological changes within the cerebellar nuclei during learning. We find that optogenetic stimulation of mossy fiber afferents to the anterior interposed nucleus (AIP) can substitute for a conditioned stimulus and is sufficient to elicit conditioned responses (CRs) that are adaptively well-timed. Further, EBC induces structural changes in mossy fiber and inhibitory inputs, but not in climbing fiber inputs, and it leads to changes in subthreshold processing of AIP neurons that correlate with conditioned eyelid movements. The changes in synaptic and spiking activity that precede the CRs allow for a decoder to distinguish trials with a CR. Our data reveal how structural and physiological modifications of synaptic inputs to cerebellar nuclei neurons can facilitate learning.


Assuntos
Núcleos Cerebelares , Condicionamento Palpebral , Camundongos , Animais , Condicionamento Palpebral/fisiologia , Condicionamento Clássico/fisiologia , Cerebelo/fisiologia , Córtex Cerebelar/fisiologia , Piscadela
5.
J Neurosci ; 43(49): 8385-8402, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37852793

RESUMO

Communication between the cerebellum and forebrain structures is necessary for motor learning and has been implicated in a variety of cognitive functions. The exact nature of cerebellar-forebrain interactions supporting behavior and cognition is not known. We examined how local and network activity support learning by simultaneously recording neural activity in the cerebellum, amygdala, and anterior cingulate cortex while male and female rats were trained in trace eyeblink conditioning. Initially, the cerebellum and forebrain signal the contingency between external stimuli through increases in theta power and synchrony. Neuronal activity driving expression of the learned response was observed in the cerebellum and became evident in the anterior cingulate and amygdala as learning progressed. Aligning neural activity to the training stimuli or learned response provided a way to differentiate between learning-related activity driven by different mechanisms. Stimulus and response-related increases in theta power and coherence were observed across all three areas throughout learning. However, increases in slow gamma power and coherence were only observed when oscillations were aligned to the cerebellum-driven learned response. Percentage of learned responses, learning-related local activity, and slow gamma communication from cerebellum to forebrain all progressively increased during training. The relatively fast frequency of slow gamma provides an ideal mechanism for the cerebellum to communicate learned temporal information to the forebrain. This cerebellar response-aligned slow gamma then provides enrichment of behavior-specific temporal information to local neuronal activity in the forebrain. These dynamic network interactions likely support a wide range of behaviors and cognitive tasks that require coordination between the forebrain and cerebellum.SIGNIFICANCE STATEMENT This study presents new evidence for how dynamic learning-related changes in single neurons and neural oscillations in a cerebellar-forebrain network support associative motor learning. The current results provide an integrated mechanism for how bidirectional communication between the cerebellum and forebrain represents important external events and internal neural drive. This bidirectional communication between the cerebellum and forebrain likely supports a wide range of behaviors and cognitive tasks that require temporal precision.


Assuntos
Condicionamento Palpebral , Giro do Cíngulo , Feminino , Masculino , Ratos , Animais , Condicionamento Palpebral/fisiologia , Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Tonsila do Cerebelo/fisiologia
6.
eNeuro ; 10(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553241

RESUMO

In mammals several memory systems are responsible for learning and storage of associative memory. Even apparently simple behavioral tasks, like pavlovian conditioning, have been suggested to engage, for instance, implicit and explicit memory processes. Here, we used single-whisker tactile trace eyeblink conditioning (TTEBC) to investigate learning and its neuronal bases in the mouse barrel column, the primary neocortical tactile representation of one whisker. Behavioral analysis showed that conditioned responses (CRs) are spatially highly restricted; they generalize from the principal whisker only to its direct neighbors. Within the respective neural representation, the principal column and its direct neighbors, spike activity showed a learning-related spike rate suppression starting during the late phase of conditioning stimulus (CS) presentation that was sustained throughout the stimulus-free trace period (Trace). Trial-by-trial analysis showed that learning-related activity was independent from the generation of eyelid movements within a trial, and set in around the steepest part of the learning curve. Optogenetic silencing of responses and their learning-related changes during CS and Trace epochs blocked CR acquisition but not its recall after learning. Silencing during the Trace alone, which carried major parts of the learning-related changes, had no effect. In summary, we demonstrate specific barrel column spike rate plasticity during TTEBC that can be partially decoupled from the CR, the learned eye closure, a hallmark of implicit learning. Our results, thus, point to a possible role of the barrel column in contributing to other kinds of memory as well.


Assuntos
Condicionamento Palpebral , Animais , Condicionamento Palpebral/fisiologia , Condicionamento Clássico/fisiologia , Memória/fisiologia , Córtex Cerebral , Neurônios/fisiologia , Piscadela , Mamíferos
7.
Sci Rep ; 13(1): 11458, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454229

RESUMO

During embryonic development, heterozygous mutant kreisler mice undergo ectopic expression of the Hoxa3 gene in the rostral hindbrain, affecting the opioid and noradrenergic systems. In this model, we have investigated behavioral and cognitive processes in their adulthood. We confirmed that pontine and locus coeruleus neuronal projections are impaired, by using startle and pain tests and by analyzing immunohistochemical localization of tyrosine hydroxylase. Our results showed that, even if kreisler mice are able to generate eyelid reflex responses, there are differences with wild-types in the first component of the response (R1), modulated by the noradrenergic system. The acquisition of conditioned motor responses is impaired in kreisler mice when using the trace but not the delay paradigm, suggesting a functional impairment in the hippocampus, subsequently confirmed by reduced quantification of alpha2a receptor mRNA expression in this area but not in the cerebellum. Moreover, we demonstrate the involvement of adrenergic projection in eyelid classical conditioning, as clonidine prevents the appearance of eyelid conditioned responses in wild-type mice. In addition, hippocampal motor learning ability was restored in kreisler mice by administration of adrenergic antagonist drugs, and a synergistic effect was observed following simultaneous administration of idazoxan and naloxone.


Assuntos
Condicionamento Clássico , Condicionamento Palpebral , Camundongos , Animais , Condicionamento Clássico/fisiologia , Neurônios/fisiologia , Condicionamento Palpebral/fisiologia , Pálpebras , Rombencéfalo/fisiologia , Proteínas de Homeodomínio
8.
J Neurosci ; 42(44): 8343-8360, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36167784

RESUMO

Although recent studies have revealed an involvement of hippocampal interneurons in learning the association among time-separated events, its underlying cellular mechanisms remained not fully clarified. Here, we combined multichannel recording and optogenetics to elucidate how the hippocampal parvalbumin-expressing interneurons (PV-INs) support associative learning. To address this issue, we trained the mice (both sexes) to learn hippocampus-dependent trace eyeblink conditioning (tEBC) in which they associated a light flash conditioned stimulus (CS) with a corneal air puff unconditioned stimuli (US) separated by a 250 ms time interval. We found that the hippocampal PV-INs exhibited learning-associated sustained activity at the early stage of tEBC acquisition. Moreover, the PV-IN sustained activity was positively correlated with the occurrence of conditioned eyeblink responses at the early learning stage. Suppression of the PV-IN sustained activity impaired the acquisition of tEBC, whereas the PV-IN activity suppression had no effect on the acquisition of delay eyeblink conditioning, a hippocampus-independent learning task. Learning-associated augmentation in the excitatory pyramidal cell-to-PVIN drive may contribute to the formation of PV-IN sustained activity. Suppression of the PV-IN sustained activity disrupted hippocampal gamma but not theta band oscillation during the CS-US interval period. Gamma frequency (40 Hz) activation of the PV-INs during the CS-US interval period facilitated the acquisition of tEBC. Our current findings highlight the involvement of hippocampal PV-INs in tEBC acquisition and reveal insights into the PV-IN activity kinetics which are of key importance for the hippocampal involvement in associative learning.SIGNIFICANCE STATEMENT The cellular mechanisms underlying associative learning have not been fully clarified. Previous studies focused on the involvement of hippocampal pyramidal cells in associative learning, whereas the activity and function of hippocampal interneurons were largely neglected. We herein demonstrated the hippocampal PV-INs exhibited learning-associated sustained activity, which was required for the acquisition of tEBC. Furthermore, we showed evidence that the PV-IN sustained activity might have arisen from the learning-associated augmentation in excitatory pyramidal cell-to-PVIN drive and contributed to learning-associated augmentation in gamma band oscillation during tEBC acquisition. Our findings provide more mechanistic understanding of the cellular mechanisms underlying the hippocampal involvement in associative learning.


Assuntos
Condicionamento Palpebral , Parvalbuminas , Masculino , Feminino , Camundongos , Animais , Condicionamento Palpebral/fisiologia , Interneurônios , Hipocampo/fisiologia , Piscadela
9.
Hippocampus ; 32(10): 776-794, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36018285

RESUMO

Because the dentate gyrus serves as the first site for information processing in the hippocampal trisynaptic circuit, it an important structure for the formation of associative memories. Previous findings in rabbit had recorded populations of cells within dentate gyrus that may bridge the temporal gap between stimuli to support memory formation during trace eyeblink conditioning, an associative learning task. However, this previous work was unable to identify the types of cells demonstrating this type of activity. To explore these changes further, we did in vivo single-neuron recording in conjunction with physiological determination of cell types to investigate the functional role of granule cells, mossy cells, and interneurons in dentate gyrus during learning. Tetrode recordings were performed in young-adult mice during training on trace eyeblink conditioning, a hippocampal-dependent temporal associative memory task. Conditioned mice were able to successfully learn the task, with male mice learning at a faster rate than female mice. In the conditioned group, granule cells tended to show an increase in firing rate during conditioned stimulus presentation while mossy cells showed a decrease in firing rate during the trace interval and the unconditioned stimulus. Interestingly, populations of interneurons demonstrated learning-related increases and decreases in activity that began at onset of the conditioned stimulus and persisted through the trace interval. The current study also found a significant increase in theta power during stimuli presentation in conditioned animals, and this change in theta decreased over time. Ultimately, these data suggest unique involvement of granule cells, mossy cells, and interneurons in dentate gyrus in the formation of a trace associative memory. This work expands our knowledge of dentate gyrus function, helping to discern how aging and disease might disrupt this process.


Assuntos
Condicionamento Palpebral , Hipocampo , Animais , Condicionamento Clássico/fisiologia , Condicionamento Palpebral/fisiologia , Giro Denteado/fisiologia , Feminino , Hipocampo/fisiologia , Aprendizagem , Masculino , Camundongos , Neurônios/fisiologia , Coelhos
10.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35228312

RESUMO

Here, we investigate stimulus generalization in a cerebellar learning paradigm, called eyeblink conditioning. Mice were conditioned to close their eyes in response to a 10-kHz tone by repeatedly pairing this tone with an air puff to the eye 250 ms after tone onset. After 10 consecutive days of training, when mice showed reliable conditioned eyelid responses to the 10-kHz tone, we started to expose them to tones with other frequencies, ranging from 2 to 20 kHz. We found that mice had a strong generalization gradient, whereby the probability and amplitude of conditioned eyelid responses gradually decreases depending on the dissimilarity with the 10-kHz tone. Tones with frequencies closest to 10 kHz evoked the most and largest conditioned eyelid responses and each step away from the 10-kHz tone resulted in fewer and smaller conditioned responses (CRs). In addition, we found that tones with lower frequencies resulted in CRs that peaked earlier after tone onset compared with those to tones with higher frequencies. Together, our data show prominent generalization patterns in cerebellar learning. Since the known function of cerebellum is rapidly expanding from pure motor control to domains that include cognition, reward-learning, fear-learning, social function, and even addiction, our data imply generalization controlled by cerebellum in all these domains.


Assuntos
Condicionamento Palpebral , Animais , Piscadela , Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Condicionamento Palpebral/fisiologia , Medo , Generalização do Estímulo , Camundongos
11.
J Neurophysiol ; 127(3): 767-775, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35138956

RESUMO

Rhythms of breathing and heartbeat are linked to each other as well as to the rhythms of the brain. Our recent studies suggest that presenting conditioned stimulus during expiration or during the diastolic phase of the cardiac cycle facilitates neural processing of that stimulus and improves learning in a conditioning task. To date, it has not been examined whether using information from both respiration and cardiac cycle phases simultaneously allows even more efficient modulation of learning. Here, we studied whether the timing of the conditioned stimulus to different cardiorespiratory rhythm phase combinations affects learning in a conditioning task in healthy young adults. The results were consistent with previous reports: timing the conditioned stimulus to diastole during expiration was more beneficial for learning than timing it to systole during inspiration. Cardiac cycle phase seemed to explain most of this variation in learning at the behavioral level. Brain-evoked potentials (N1) elicited by the conditioned stimulus and recorded using electroencephalogram were larger when the conditioned stimulus was presented to diastole during expiration than when it was presented to systole during inspiration. Breathing phase explained the variation in the N1 amplitude. To conclude, our findings suggest that noninvasive monitoring of bodily rhythms combined with closed-loop control of stimulation can be used to promote learning in humans. The next step will be to test if performance can also be improved in humans with compromised cognitive ability, such as in older people with memory impairments.NEW & NOTEWORTHY We report, for the first time, that the rhythms of breathing and the beating of the heart have a phase combination that is indicative of a neural state beneficial for cognition. This suggests that bodily rhythms not only modulate cognition but that this phenomenon can also be noninvasively harnessed to improve learning in humans.


Assuntos
Condicionamento Palpebral , Idoso , Piscadela , Condicionamento Clássico/fisiologia , Condicionamento Palpebral/fisiologia , Eletroencefalografia , Humanos , Respiração , Adulto Jovem
12.
Elife ; 102021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33843589

RESUMO

Trace conditioning and extinction learning depend on the hippocampus, but it remains unclear how neural activity in the hippocampus is modulated during these two different behavioral processes. To explore this question, we performed calcium imaging from a large number of individual CA1 neurons during both trace eye-blink conditioning and subsequent extinction learning in mice. Our findings reveal that distinct populations of CA1 cells contribute to trace conditioned learning versus extinction learning, as learning emerges. Furthermore, we examined network connectivity by calculating co-activity between CA1 neuron pairs and found that CA1 network connectivity patterns also differ between conditioning and extinction, even though the overall connectivity density remains constant. Together, our results demonstrate that distinct populations of hippocampal CA1 neurons, forming different sub-networks with unique connectivity patterns, encode different aspects of learning.


Assuntos
Condicionamento Clássico/fisiologia , Condicionamento Palpebral/fisiologia , Extinção Psicológica , Neurônios/fisiologia , Animais , Piscadela/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL
13.
Cereb Cortex ; 31(1): 281-300, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32885230

RESUMO

It is assumed that the claustrum (CL) is involved in sensorimotor integration and cognitive processes. We recorded the firing activity of identified CL neurons during classical eyeblink conditioning in rabbits, using a delay paradigm in which a tone was presented as conditioned stimulus (CS), followed by a corneal air puff as unconditioned stimulus (US). Neurons were identified by their activation from motor (MC), cingulate (CC), and medial prefrontal (mPFC) cortices. CL neurons were rarely activated by single stimuli of any modality. In contrast, their firing was significantly modulated during the first sessions of paired CS/US presentations, but not in well-trained animals. Neuron firing rates did not correlate with the kinematics of conditioned responses (CRs). CL local field potentials (LFPs) changed their spectral power across learning and presented well-differentiated CL-mPFC/CL-MC network dynamics, as shown by crossfrequency spectral measurements. CL electrical stimulation did not evoke eyelid responses, even in trained animals. Silencing of synaptic transmission of CL neurons by the vINSIST method delayed the acquisition of CRs but did not affect their presentation rate. The CL plays an important role in the acquisition of associative learning, mostly in relation to the novelty of CS/US association, but not in the expression of CRs.


Assuntos
Potenciais de Ação/fisiologia , Cognição/fisiologia , Condicionamento Clássico/fisiologia , Pálpebras/fisiologia , Animais , Piscadela/fisiologia , Condicionamento Palpebral/fisiologia , Estimulação Elétrica/métodos , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Coelhos
14.
Sci Rep ; 10(1): 15900, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985542

RESUMO

Prion protein (PrPC) knockout mice, named as the "Ngsk" strain (Ngsk Prnp0/0 mice), show late-onset cerebellar Purkinje cell (PC) degeneration because of ectopic overexpression of PrPC-like protein (PrPLP/Dpl). Our previous study indicated that the mutant mice also exhibited alterations in cerebellum-dependent delay eyeblink conditioning, even at a young age (16 weeks of age) when neurological changes had not occurred. Thus, this electrophysiological study was designed to examine the synaptic function of the cerebellar cortex in juvenile Ngsk Prnp0/0 mice. We showed that Ngsk Prnp0/0 mice exhibited normal paired-pulse facilitation but impaired long-term depression of excitatory synaptic transmission at synapses between parallel fibres and PCs. GABAA-mediated inhibitory postsynaptic currents recorded from PCs were also weakened in Ngsk Prnp0/0 mice. Furthermore, we confirmed that Ngsk Prnp0/0 mice (7-8-week-old) exhibited abnormalities in delay eyeblink conditioning. Our findings suggest that these alterations in both excitatory and inhibitory synaptic transmission to PCs caused deficits in delay eyeblink conditioning of Ngsk Prnp0/0 mice. Therefore, the Ngsk Prnp0/0 mouse model can contribute to study underlying mechanisms for impairments of synaptic transmission and neural plasticity, and cognitive deficits in the central nervous system.


Assuntos
Cerebelo/fisiopatologia , Depressão Sináptica de Longo Prazo/fisiologia , Proteínas PrPC/genética , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Cerebelo/metabolismo , Condicionamento Palpebral/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Proteínas PrPC/metabolismo
15.
PLoS One ; 15(8): e0237451, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790748

RESUMO

The serial feature-positive discrimination task requires the subjects to respond differentially to the identical stimulus depending on the temporal context given by a preceding cue stimulus. In the present study, we examined the involvement of the M1 muscarinic acetylcholine receptors using a selective M1 antagonist VU0255035 in the serial feature-positive discrimination task of eyeblink conditioning in mice. In this task, mice received a 2-s light stimulus as the conditional cue 5 or 6 s before the presentation of a 350-ms tone conditioned stimulus (CS) paired with a 100-ms peri-orbital electrical shock (cued trials), while they did not receive the cue before the presentation of the CS alone (non-cued trials). Each day mice randomly received 30 cued and 30 non-cued trials. We found that VU0255035 impaired acquisition of the conditional discrimination as well as the overall acquisition of the conditioned response (CR) and diminished the difference in onset latency of the CR between the cued and non-cued trials. VU0255035 administration to the control mice after sufficient learning did not impair the pre-acquired conditional discrimination or the CR expression itself. These effects of VU0255035 were almost similar to those with the scopolamine in our previous study, suggesting that among the several types of muscarinic acetylcholine receptors, the M1 receptors may play an important role in the acquisition of the conditional discrimination memory but not in mediating the discrimination itself after the memory had formed in the eyeblink serial feature-positive discrimination learning.


Assuntos
Piscadela/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Receptor Muscarínico M1/metabolismo , Sulfonamidas/farmacologia , Tiadiazóis/farmacologia , Animais , Condicionamento Palpebral/efeitos dos fármacos , Condicionamento Palpebral/fisiologia , Eletromiografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Receptor Muscarínico M1/antagonistas & inibidores
16.
Psychiatry Res Neuroimaging ; 304: 111133, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32805441

RESUMO

There is accruing evidence of cerebellar abnormalities in individuals with schizophrenia as measured by performance on a variety of tasks believed to be dependent on cerebellar integrity, including delay eyeblink conditioning. There is also evidence of cerebellar dysfunction on a neural level in schizophrenia from both task-based and resting state neuroimaging studies, however few studies have examined cerebellar neural function while the cerebellum is directly recruited in individuals with schizophrenia. In the current pilot study, we examined neural activity during an explicitly cerebellar task in individuals with schizophrenia or schizoaffective disorder and non-psychiatric controls. Participants underwent delay eyeblink conditioning during fMRI. Results indicated eyeblink conditioning impairment in patients as evidenced by a group by time interaction for conditioned responses. A significant cluster of cerebellar activation was present in controls but not patients during the first half of conditioning; there were no significant differences in activation between groups. An ROI analysis focused on the cerebellum in patients revealed two significant clusters that were inversely associated with negative symptom severity. These results are broadly consistent with the theory of cognitive dysmetria, wherein cerebellar abnormalities are theorized to contribute to motor as well as cognitive and affective disturbances in schizophrenia.


Assuntos
Piscadela , Cerebelo/fisiopatologia , Condicionamento Palpebral/fisiologia , Esquizofrenia/fisiopatologia , Adulto , Cerebelo/diagnóstico por imagem , Condicionamento Clássico/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Projetos Piloto , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/fisiopatologia , Esquizofrenia/diagnóstico por imagem
17.
Int J Neural Syst ; 30(8): 2050041, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32618205

RESUMO

Several data have demonstrated that during the widely used experimental paradigm for studying associative learning, trace eye blinking conditioning (TEBC), there is a strong interaction between cerebellum and medial prefrontal cortex (mPFC). Despite this evidence, the neural mechanisms underlying this interaction are still not clear. Here, we propose a neurophysiologically plausible computational model to address this issue. The model is constrained on the basis of two critical anatomo-physiological features: (i) the cerebello-cortical organization through two circuits, respectively, targeting M1 and mPFC; (ii) the different timing in the plasticity mechanisms of these parallel circuits produced by the granule cells time sensitivity according to which different subpopulations are active at different moments during conditioned stimuli. The computer simulations run with the model suggest that these features are critical to understand how the cooperation between cerebellum and mPFC supports motor areas during TEBC. In particular, a greater trace interval produces greater plasticity changes at the slow path synapses involving mPFC with respect to plasticity changes at the fast path involving M1. As a consequence, the greater is the trace interval, the stronger is the mPFC involvement. The model has been validated by reproducing data collected through recent real mice experiments.


Assuntos
Cerebelo/fisiologia , Condicionamento Palpebral/fisiologia , Modelos Biológicos , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiologia , Humanos , Neurociências
18.
Proc Natl Acad Sci U S A ; 117(12): 6855-6865, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152108

RESUMO

Perineuronal nets (PNNs) are assemblies of extracellular matrix molecules, which surround the cell body and dendrites of many types of neuron and regulate neural plasticity. PNNs are prominently expressed around neurons of the deep cerebellar nuclei (DCN), but their role in adult cerebellar plasticity and behavior is far from clear. Here we show that PNNs in the mouse DCN are diminished during eyeblink conditioning (EBC), a form of associative motor learning that depends on DCN plasticity. When memories are fully acquired, PNNs are restored. Enzymatic digestion of PNNs in the DCN improves EBC learning, but intact PNNs are necessary for memory retention. At the structural level, PNN removal induces significant synaptic rearrangements in vivo, resulting in increased inhibition of DCN baseline activity in awake behaving mice. Together, these results demonstrate that PNNs are critical players in the regulation of cerebellar circuitry and function.


Assuntos
Piscadela/fisiologia , Núcleos Cerebelares/fisiologia , Condicionamento Palpebral/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Matriz Extracelular , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL
19.
Alcohol Clin Exp Res ; 44(3): 620-631, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31984510

RESUMO

BACKGROUND: Excessive alcohol consumption produces changes in the brain that often lead to cognitive impairments. One fundamental form of learning, eyeblink classical conditioning (EBC), has been widely used to study the neurobiology of learning and memory. Participants with alcohol use disorders (AUD) have consistently shown a behavioral deficit in EBC. The present functional magnetic resonance imaging (fMRI) study is the first to examine brain function during conditioning in abstinent AUD participants and healthy participants. METHODS: AUD participants met DSM-IV criteria for alcohol dependence, had at least a 10-year history of heavy drinking, and were abstinent from alcohol for at least 30 days. During fMRI, participants received auditory tones that predicted the occurrence of corneal airpuffs. Anticipatory eyeblink responses to these tones were monitored during the experiment to assess learning-related changes. RESULTS: Behavioral results indicate that AUD participants showed significant conditioning deficits and that their history of lifetime drinks corresponded to these deficits. Despite this learning impairment, AUD participants showed hyperactivation in several key cerebellar structures (including lobule VI) during conditioning. For all participants, history of lifetime drinks corresponded with their lobule VI activity. CONCLUSIONS: These findings suggest that excessive alcohol consumption is associated with abnormal cerebellar hyperactivation and conditioning impairments.


Assuntos
Alcoolismo/fisiopatologia , Cerebelo/fisiopatologia , Condicionamento Palpebral/fisiologia , Estimulação Acústica , Adulto , Piscadela , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
20.
Neurobiol Learn Mem ; 170: 107165, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953233

RESUMO

The relation between sleep and different forms of memory formation continues to be a relevant topic in our daily life. Sleep has been found to affect cerebellum-dependent procedural memory formation, but it remains to be elucidated to what extent the level of sleep deprivation directly after motor training also influences our ability to store and retrieve memories. Here, we studied the effect of disturbed sleep in mice during two different time-windows, one covering the first four hours following eyeblink conditioning (EBC) and another window following the next period of four hours. Compared to control mice with sleep ad libitum, the percentage of conditioned responses and their amplitude were impaired when mice were deprived of sleep directly after conditioning. This impairment was still significant when the learned EBC responses were extinguished and later reacquired. However, consolidation of eyeblink responses was not affected when mice were deprived later than four hours after acquisition, not even when tested during a different day-night cycle for control. Moreover, mice that slept longer directly following EBC showed a tendency for more conditioned responses. Our data indicate that consolidation of motor memories can benefit from sleep directly following memory formation.


Assuntos
Condicionamento Palpebral/fisiologia , Consolidação da Memória/fisiologia , Privação do Sono/psicologia , Animais , Comportamento Animal , Encéfalo/fisiologia , Masculino , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...